Imparting Icephobicity with Substrate Flexibility.
نویسندگان
چکیده
Ice accumulation hinders the performance of, and poses safety threats for, infrastructure both on the ground and in the air. Previously, rationally designed superhydrophobic surfaces have demonstrated some potential as a passive means to mitigate ice accretion; however, further studies on material solutions that reduce impalement and the contact time for impacting supercooled droplets (high viscosity) and can also repel droplets that freeze during surface contact are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface micro/nanotexture on enhancing both icephobicity and the repellency of viscous droplets (typical of supercooled water). We first investigate the influence of increased viscosity (spanning from 0.9 to 1078 mPa·s using water-glycerol mixtures) on impalement resistance and the droplet-substrate contact time after impact. Then we examine the effect of droplet partial solidification on recoil and simulate more challenging icing conditions by impacting supercooled water droplets (down to -15 °C) onto flexible and rigid surfaces containing ice nucleation promoters (AgI). We demonstrate a passive mechanism for shedding partially solidified (recalescent) droplets-under conditions where partial solidification occurs much faster than the natural droplet oscillation-which does not rely on converting droplet surface energy into kinetic energy (classic recoil mechanism). Using an energy-based model (kinetic-elastic-capillary), we identify a previously unexplored mechanism whereby the substrate oscillation and velocity govern the rebound process, with low areal density and moderately stiff substrates acting to efficiently absorb the incoming droplet kinetic energy and rectify it back, allowing droplets to overcome adhesion and gravitational forces, and recoil. This mechanism applies for a range of droplet viscosities, spanning from low- to high-viscosity fluids and even ice slurries, which do not rebound from rigid superhydrophobic substrates. For a low-viscosity fluid, i.e., water, if the substrate oscillates faster than the droplet spreading and retraction, the action of the substrate is decoupled from the droplet oscillation, resulting in a reduction in the droplet-substrate contact time.
منابع مشابه
From superhydrophobicity to icephobicity: forces and interaction analysis
The term "icephobicity" has emerged in the literature recently. An extensive discussion took place on whether the icephobicity is related to the superhydrophobicity, and the consensus is that there is no direct correlation. Besides the parallel between the icephobicity and superhydrophobicity for water/ice repellency, there are similarities on other levels including the hydrophobic effect/hydro...
متن کاملSaltwater icephobicity: Influence of surface chemistry on saltwater icing
Most studies on icephobicity focus on ice formation with pure water. This manuscript presents studies to understand the influence of surfaces on saltwater ice nucleation and propagation. Experiments are conducted to quantify the influence of surface chemistry on saltwater ice nucleation and to understand the utility of superhydrophobic surfaces for saltwater icephobicity. These experiments are ...
متن کاملSurface micro/nanotopography, wetting properties and the potential for biomimetic icephobicity of skunk cabbage Symplocarpus foetidus.
Lotus (Nelumbo nucifera) is known for its two remarkable properties: superhydrophobicity and thermogenesis; however, the relationship between these two properties remains obscure. Most botanists agree that thermogenesis helps to attract pollinators, while non-wetting helps to catch pollinators and prevents contamination. Here we investigate the surface micro- and nanotopography and wetting prop...
متن کاملAnti-Icing Superhydrophobic Surfaces: Controlling Entropic Molecular Interactions to Design Novel Icephobic Concrete
Tribology involves the study of friction, wear, lubrication, and adhesion, including biomimetic superhydrophobic and icephobic surfaces. The three aspects of icephobicity are the low ice adhesion, repulsion of incoming water droplets prior to freezing, and delayed frost formation. Although superhydrophobic surfaces are not always icephobic, the theoretical mechanisms behind icephobicity are sim...
متن کاملFabrication and investigation of a transparent and flexible loudspeaker and microphone based on carbon nanotube
Transparent acoustic sensors and actuators are a new generation of acoustic transducers that can create an evolution in the microphone and loudspeakers industries. These transducers with properties like transparency, flexibility, flatness, very low weight and thickness have a great potential for various applications like public speakers, active noise cancelation systems, displays, cell phones a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 33 27 شماره
صفحات -
تاریخ انتشار 2017